1. Home
  2. Our Products
  3. Pipeline Toolbox
  4. AGR
  5. Natural Gas Pipeline Rupture – Width, Radius, and Depth of Crater

Natural Gas Pipeline Rupture – Width, Radius, and Depth of Crater

Natural gas rupture includes three (3) models that determine depth, radius and Width of the crater. Gasunie, NEN 3651 Radius of Crater and PRCI/Gasunie/Battelle combined model.

GASUNIE MODEL


This model applies to a guillotine rupture wherein two separate pipe ends exists after the rupture.

Crater Depth:
𝑀 βˆ’ Soil Parameter
𝐷𝑝 βˆ’ Pipe Outside Diameter(m)
π‘π‘œ βˆ’ Pipe Pressure(Pa)
𝐷𝑐 βˆ’ Depth of Cover from ground surface to center of the pipe(m)
𝐷 βˆ’ Depth of Crater(m)
𝑅 βˆ’ Soil Parameter Function

Soil Parameter Functions: R(w)=0.28+0.62(5-w)-0.07(25-w2)

R(w)=0.28+0.62(5-w)-0.07(25-w2)

Allowable limits for R are between 0.28 and 1.3:

if \,w\leq0.6 \;\;\;\;\;\;\;\;\;\; D=4.3D_p+D_c

if \,w\leq0.6 \;\;\;\;\;\;\;\;\;\; D=4.3D_p+D_c

if \,0.6< w<2 \;\;\;\;\;\;\;\;\;\; D=\frac {RD_p}{0.3}+D_c

if \,0.6< w<2 \;\;\;\;\;\;\;\;\;\; D=\frac {RD_p}{0.3}+D_c

if \,w\geq2 \;\;\;\;\;\;\;\;\;\; D=2.2D_p+D_c

if \,w\geq2 \;\;\;\;\;\;\;\;\;\; D=2.2D_p+D_c

The crater angles are determined from empirical equations: \alpha_1 = tan^{βˆ’1}(𝑀 + 1)

\alpha_1 = tan^{βˆ’1}(𝑀 + 1)

\alpha_2Β = tan^{βˆ’1}[(\frac{2.8+0.5w}{10})(𝑀 + 1)]

\alpha_2 = tan^{βˆ’1}[(\frac{2.8+0.5w}{10})(𝑀 + 1)]

Considering crater and dimensions shown in Figure 1. The equation of the ellipse is given by:

\frac {x^2}{a^2}+\frac {y^2}{b^2}=1

\frac {x^2}{a^2}+\frac {y^2}{b^2}=1

Differentiating this at the ground level and substituting for x give: \frac {dx}{dy}=\frac{b}{a}\frac{{\sqrt {(b^2-y^2)}}}{y} \,For\,x>0

\frac {dx}{dy}=\frac{b}{a}\frac{{\sqrt {(b^2-y^2)}}}{y} \,For\,x>0

Evaluating this on the ground level and half crater depth gives: tan\,\alpha_1=\frac{b}{a}\sqrt{{(\frac{b}{b-D}})^2-1}

tan\,\alpha_1=\frac{b}{a}\sqrt{{(\frac{b}{b-D}})^2-1}

tan\,\alpha_2=\frac{b}{a}\sqrt{{(\frac{b}{b-0.5D}})^2-1}

tan\,\alpha_2=\frac{b}{a}\sqrt{{(\frac{b}{b-0.5D}})^2-1}

These can be solved simultaneously: \frac {\frac{b}{a}\sqrt{{(\frac{b}{b-D}})^2-1}}{tan\,\alpha_1}=\frac {\frac{b}{a}\sqrt{{(\frac{b}{b-0.5D}})^2-1}}{tan\,\alpha_2}

\frac {\frac{b}{a}\sqrt{{(\frac{b}{b-D}})^2-1}}{tan\,\alpha_1}=\frac {\frac{b}{a}\sqrt{{(\frac{b}{b-0.5D}})^2-1}}{tan\,\alpha_2}

The width of crater W is given by: W=2a\sqrt {1-\frac{(b-D)^2}{b^2}}

W=2a\sqrt {1-\frac{(b-D)^2}{b^2}}

NEN 3651 MODEL RADIUS OF THE CRATER

Model may be applied for guillotine type rupture, NEN 3651 define radius of the crater as:

R_w=\sqrt{ 0.64(D_p^3p_o)^\frac{2}{3}+ 0.65(D_p^3p_o)^\frac{1}{3} -0.83D_c^2 }

R_w=\sqrt{  0.64(D_p^3p_o)^\frac{2}{3}+   0.65(D_p^3p_o)^\frac{1}{3} -0.83D_c^2 }

PRCI/GASUNIE/BATTELLE COMBINED MODEL

This model may be applied for guillotine type rupture only. Computation of the crater depth in combined PRCI/Gasunie/Battelle model is the same as described above for Gasunie model. 

The crater width is calculated as:

W= 2 \sqrt{ \frac{D_pW_w}{u_{kr}} \sqrt{ \frac{\gamma P_o}{3\rho_{π‘ π‘œπ‘–π‘™}(\gamma^2-1)} }-W_w^{2} }\~\u_x= \sqrt{ \frac{\gamma P_o}{3\rho_{π‘ π‘œπ‘–π‘™}(\gamma^2-1)}} \~\ W= 2 \sqrt{ \frac{D_pW_w}{u_{kr} }u_x-W_w^{2} }

W= 2 \sqrt{ \frac{D_pW_w}{u_{kr}}  \sqrt{ \frac{\gamma P_o}{3\rho_{π‘ π‘œπ‘–π‘™}(\gamma^2-1)}     }-W_w^{2}   }\\~\\u_x= \sqrt{ \frac{\gamma P_o}{3\rho_{π‘ π‘œπ‘–π‘™}(\gamma^2-1)}} \\~\\ W= 2 \sqrt{ \frac{D_pW_w}{u_{kr}    }u_x-W_w^{2}   }

Where:

RP= DP/2

π‘Šπ‘€ = π·π‘ + π‘…𝑝 βˆ’ Distance from the Ground to the Center of the Pipe[m]

πœŒπ‘ π‘œπ‘–π‘™ βˆ’ Soil Density[kg/m3]

𝛾 βˆ’ Gas Specific Heat Ratio(1.031 for Natural Gas)

π‘’π‘˜π‘Ÿ = 2.54[m/s] βˆ’ Critical Gas Velocity [m/s]

𝑒π‘₯ βˆ’ Velocity of the Explosive Gases[m/s]

Case Guide

Part 1: Create Case

  1. Select the Natural Gas Pipeline Rupture – Width, Radius, Depth of Crater application in the AGR & GPRA module.
  2. To create a new case, click the β€œAdd Case” button.
  3. Enter Case Name, Location, Date and any necessary notes.
  4. Fill out all required parameters.
  5. Make sure the values you are inputting are in the correct units.
  6. Click the CALCULATE button to overview results.

Input Parameters

  • Pipe Outside Diameter
  • Pipe Internal Pressure
  • Depth of Cover
  • Average Unit Weight of Soil
  • Natural Gas Specific Heat Ratio
  • Soil Type
  • w – Soil Parameter
  • Alpha 1 – Crater Wall Angle at Ground Level
  • Alpha 2 – Crater Wall Angle at Half Depth

Part 2: Outputs/Reports

  1. If you need to modify an input parameter, click the CALCULATE button after the change.
  2. To SAVE, fill out all required case details then click the SAVE button.
  3. To rename an existing file, click the SAVE As button. Provide all case info then click SAVE.
  4. To generate a REPORT, click the REPORT button.
  5. The user may export the Case/Report by clicking the Export to Excel icon.
  6. To delete a case, click the DELETE icon near the top of the widget.

Results

  • Gasunie Model
    • R – Soil Parameter Function
    • Depth of Crater
    • Width of Crater
  • NEN 3651 Model
    • Radius of Crater
  • PRCI/Gasunie/Battelle Model
    • Velocity of Explosive Gases
    • Depth of Crater
    • Width of Crater

References

  • GRI-00/0189, A Model for Sizing High Consequence Areas Associated with Natural Gas Pipelines, Gas Technology Institute
  • PHMSA – Final Report TTO Number 13, Delivery Order DTRS56-02-D-70036, Michael Baker Jr., Inc. –
  • PHMSA – Final Report TTO Number 14, Delivery Order DTRS56-02-D-70036, , Michael Baker Jr., Inc.
  • Crane Limited, Flow of Fluids through Valves, Fittings, and Pipe, Technical Paper No. 410-C, Crane Engineering Division
  • Schram, W., β€œPrediction of Crater Caused by Underground Pipeline Rupture”, N.V. Nederland se Gasunie, Report TR/T 97.R.2515
  • NEN 3651, Annex A: β€œDetermining Disturbance Zone Dimension”
  • PRCI L51861, β€œLine Rupture and Spacing of Parallel Lines”, Battelle Memorial Institute

Updated on December 14, 2023

Was this article helpful?

Related Articles