1. Home
  2. Our Products
  3. Pipeline Toolbox
  4. Pipeline Compressors
  5. Reciprocating Compressor – Cylinder/Equivalent Capability & Horsepower

Reciprocating Compressor – Cylinder/Equivalent Capability & Horsepower

Introduction

This application uses a positive displacement compressor model to deliver gases at high pressures. With piston displacement reciprocating compressors, often final outlet temp could be a concern.

Piston Displacement

Single-Acting Piston Compression on the Outer End Only: PD = \frac{sn\pi D^2}{4 \times 1728}

PD = \frac{sn\pi D^2}{4 \times 1728}

Single-Acting Piston Compression on the Crank End Only: PD = \frac{sn\pi (D^2 – d^2)}{4 \times 1728}

PD = \frac{sn\pi (D^2 - d^2)}{4 \times 1728}

Double-Acting Piston Compression (Other than Tail Rod Type): PD = \frac{sn\pi (2D^2 – d^2)}{4 \times 1728}

PD = \frac{sn\pi (2D^2 - d^2)}{4 \times 1728}

Double-Acting Piston Compression (With a Tail Rod): PD = \frac{2sn\pi (D^2 – d^2)}{4 \times 1728}

PD = \frac{2sn\pi (D^2 - d^2)}{4 \times 1728}

Where:
𝑃𝐷 βˆ’ Piston Displacement (ft3/min)
𝑠 βˆ’ Stroke (𝑖𝑛)
𝑛 βˆ’ Rotational Speed (rpm)
𝐷 βˆ’ Cylinder Inside Diameter (in)
𝑑 βˆ’ Piston Rod Diameter (in)

Reciprocating Compressor Volumetric Efficiency

VE = 100 – A – L_u – r – C \left[ \frac{Z_s}{Z_d} \left( r^{\frac{1}{k}} \right) – 1 \right]

VE = 100 - A - L_u - r - C \left[ \frac{Z_s}{Z_d} \left( r^{\frac{1}{k}} \right) - 1 \right]

Where:
𝑉𝐸 βˆ’ Volumetric Efficiency (%)
𝐴 βˆ’ Effect of Leakage, Losses etc. (%)
𝐿𝑒 βˆ’ Effect due to Lack of Lubrication (%)
π‘Ÿ βˆ’ Compression Ratio (𝑃2/𝑃1)
𝐢 βˆ’ Cylinder Clearance as a Percent of Cylinder Volume (%)
𝑧𝑠 βˆ’ Compressibility Factor at Suction Conditions
𝑧𝑑 βˆ’ Compressibility Factor at Discharge Conditions
π‘˜ βˆ’ Adiabatic/Isentropic Exponent (𝑐𝑝/𝑐𝑣)

In practice for normal operation

VE = 96 – r – C \left[ \frac{Z_s}{Z_d} \left( r^{\frac{1}{k}} \right) – 1 \right]

VE = 96 - r - C \left[ \frac{Z_s}{Z_d} \left( r^{\frac{1}{k}} \right) - 1 \right]

CNGA/GPSA Compressibility Factor Approximation:

Z=\frac{1}{\left[1+\left(\frac{3.444\times10^5P\times10^{1.785G}}{T_f^{3.825}} \right)\right]}

Z=\frac{1}{\left[1+\left(\frac{3.444\times10^5P\times10^{1.785G}}{T_f^{3.825}}   \right)\right]}

Where:
𝑍 βˆ’ Compressibility Factor
𝑃 βˆ’ Pressure
𝑇𝑓 βˆ’ Gas Flowing Temperature (°𝑅)

This approximation will produce results sufficiently accurate for preliminary calculations.

Q_{\text{actual}} = PD \frac{VE}{100} \quad [\text{ft}^3/\text{min}] \text{(ACFM)} \~\ Q_{\text{actual}} = PD \cdot VE\frac{P_1}{P_b} \cdot 14.4 \times 10^{-5} \quad [\text{MMCFD}] \~\ Q_{st} = Q_{\text{actual}} \frac{P_1}{P_b}\frac{T_b}{T_1}\frac{Z_b}{Z_1} \quad [\text{MMSCFD}]

Q_{\text{actual}} = PD \frac{VE}{100} \quad [\text{ft}^3/\text{min}] \text{(ACFM)} \\~\\ Q_{\text{actual}} = PD \cdot VE\frac{P_1}{P_b} \cdot 14.4 \times 10^{-5} \quad [\text{MMCFD}] \\~\\ Q_{st} = Q_{\text{actual}} \frac{P_1}{P_b}\frac{T_b}{T_1}\frac{Z_b}{Z_1} \quad [\text{MMSCFD}]


Reciprocating Compressor Horsepower

HP=\frac{144}{33000}\left( \frac{P_1Q}{n}\right)\left(\frac{k}{k-1} \right)\left[ (r)^{\frac{k-1}{k}}-1\right] [HP]

HP=\frac{144}{33000}\left( \frac{P_1Q}{n}\right)\left(\frac{k}{k-1} \right)\left[ (r)^{\frac{k-1}{k}}-1\right] [HP]

Where:
𝑄 βˆ’ Suction Capacity (SCFM)
𝑃1 βˆ’ Gas Suction Pressure (psi)
𝑛 βˆ’ Compressor Efficiency
π‘˜ = (𝑐𝑝/𝑐𝑣) βˆ’ Specific Heat Ratio
π‘Ÿ βˆ’ Compression Ratio (𝑃2/𝑃1)

Ideal Discharge Temperature

T_{2(\text{ideal})} = T_1 \left[ (r)^{\frac{k-1}{k}} – 1 \right]

T_{2(\text{ideal})} = T_1 \left[ (r)^{\frac{k-1}{k}} - 1 \right]

Where:
𝑇2(π‘–π‘‘π‘’π‘Žπ‘™) βˆ’ Ideal Discharge Temperature (Β°R)
𝑇1 βˆ’ Suction Temperature (Β°R)
π‘Ÿ βˆ’ Compression Ratio (P2/P1)
π‘˜ βˆ’ 𝐴diabatic/Isentropic Exponent (π‘˜=[𝑐𝑝/𝑐𝑣])

Theoretical Discharge Temperature

\Delta T_{\text{ideal}} = T_1 \left[ (r)^{\frac{k-1}{k}} – 1 \right]

\Delta T_{\text{ideal}} = T_1 \left[ (r)^{\frac{k-1}{k}} - 1 \right]

Where:
𝑇2 = 𝑇1+Ξ”π‘‡π‘–π‘‘π‘’π‘Žπ‘™
𝑇2 βˆ’ Theoretical Discharge Temperature (Β°R)

Actual Discharge Temperature

\Delta T_{\text{actual}} = T_1 \frac{\left[ (r)^{\frac{k-1}{k}} – 1 \right]}{ {n_a}}

\Delta T_{\text{actual}} = T_1 \frac{\left[ (r)^{\frac{k-1}{k}} - 1  \right]}{ {n_a}}

Where:
𝑇2 = 𝑇1+Ξ”π‘‡π‘Žπ‘π‘‘π‘’π‘Žπ‘™
𝑇2 βˆ’ Actual Discharge Temperature (Β°R)
π‘›π‘Ž βˆ’ Adiabatic (Isentropic) Efficiency

Case Guide

Part 1: Create Case

  1. Select the Adiabatic Head application from the Compressor Module
  2. To create a new case, click the β€œAdd Case” button
  3. Enter Case Name, Location, Date and any necessary notes.
  4. Fill out all required Parameters.
  5. Make sure the values you are inputting are in the correct units.
  6. Click the CALCULATE button to overview results.

Input Parameters

  • Suction Temperature Upstream (Β°F)
  • Base Temperature (Β°F)
  • Base Pressure (psi)
  • Suction Pressure Upstream (psig)
  • Discharge Pressure Downstream (psig)
  • Bore/Cylinder Inside Diameter (in)
  • Stroke/Travel Length of Piston (in)
  • Rotational Speed (rpm)
  • Cylinder Clearance (%)
  • Piston Rod Diameter (in)
  • Capacity/Required Flow Rate (MMSCFD)
  • Gas Specific Gravity (Relative to air)
  • Gas Molecular Weight
  • Gas Specific Heat Ratio
  • Compressor Mechanical Efficiency
  • Compressibility Factor

Part 2: Outputs/Reports

  1. If you need to modify an input parameter, click the CALCULATE button after the change.
  2. To SAVE, fill out all required case details then click the SAVE button.
  3. To rename an existing file, click the SAVE As button. Provide all case info then click SAVE.
  4. To generate a REPORT, click the REPORT button.
  5. The user may export the Case/Report by clicking the Export to Excel icon.
  6. To delete a case, click the DELETE icon near the top of the widget.

Results

  • Piston Displacement (ftΒ³/min)
  • Discharge Temperature (Β°F)
  • Z1 – Compressibility Factor at Suction
  • Z2 – Compressibility Factor at Discharge
  • Volumetric Efficiency (%)
  • Cylinder Capacity (SCFM)
  • Equivalent Capacity (MMSCFD)
  • Cylinder Brake Horsepower Required (HP)

References

  • Engineering Data Book, Volume 1, Gas Processors Suppliers Association, Tenth Edition
  • Compressor Station Operation, Book T-2, GEOP, American Gas Association (A.G.A.)
  • Compressor Selection and Sizing, Royce N. Brown, Second Edition, Gulf Professional Publishing

Updated on January 4, 2024

Was this article helpful?

Related Articles