Surge Analysis – Water Hammer

Introduction

These equations are primarily used for calculating pressure drops and flow rates. However, a modified Reynolds number must be used. When calculating flow rate or internal pipe diameter, a modified Reynolds number must be calculated first using the up or down stream calculations to run these calculations. No internal roughness considered.

Friction factor is solved using Newton-Raphson method

f=\frac{64}{Re};\,Laminar\,Flow: Re < 2000 \~\ \frac{1}{\sqrt{f}}=2\log_{10}(Re\sqrt{f})-0.8;\,Smooth\,Pipe:Re >4000\,and\,\frac{\varepsilon}{D}\rightarrow0\~\ \frac{1}{\sqrt{f}}=-2\log_{10}\biggr(\frac{\varepsilon}{3.7D}+\frac{2.51}{Re\sqrt{f}}\biggr);\,Transitional,\,Colebrook-White\,Eq,Re>4000\~\ \frac{1}{\sqrt{f}}=1.14-2\log_{10}\biggr(\frac{\varepsilon}{D}\biggr);\,Wholly \,Rough

f=\frac{64}{Re};\,Laminar\,Flow: Re < 2000 \\~\\ \frac{1}{\sqrt{f}}=2\log_{10}(Re\sqrt{f})-0.8;\,Smooth\,Pipe:Re >4000\,and\,\frac{\varepsilon}{D}\rightarrow0\\~\\ \frac{1}{\sqrt{f}}=-2\log_{10}\biggr(\frac{\varepsilon}{3.7D}+\frac{2.51}{Re\sqrt{f}}\biggr);\,Transitional,\,Colebrook-White\,Eq,Re>4000\\~\\ \frac{1}{\sqrt{f}}=1.14-2\log_{10}\biggr(\frac{\varepsilon}{D}\biggr);\,Wholly \,Rough

𝑓 − Friction Factor

D – Inside Pipe Diameter[in]

𝜀 − Pipe Roughness[in]

The momentum continuity equations: g \frac{\delta H}{\delta x} + \frac{f V|V| }{2D} + V \frac{V\delta V}{\delta x} + \frac{\delta V}{\delta t} = 0

g \frac{\delta H}{\delta x} + \frac{f V|V| }{2D} + V \frac{V\delta V}{\delta x} + \frac{\delta V}{\delta t} = 0

Infinite difference form could be seen: \frac{\Delta V}{\Delta t} \text{ and } g \frac{\Delta H}{\Delta x} \gg V \frac{\Delta V}{\Delta x} \~\ \frac{\Delta H}{\Delta t} \text{ and } a^2 \frac{\Delta V}{\Delta x} \gg V \frac{\Delta H}{\Delta x}

\frac{\Delta V}{\Delta t} \text{ and } g \frac{\Delta H}{\Delta x} \gg V \frac{\Delta V}{\Delta x} \\~\\
\frac{\Delta H}{\Delta t} \text{ and } a^2 \frac{\Delta V}{\Delta x} \gg V \frac{\Delta H}{\Delta x}

The equations simplify to: E_1 = g \frac{\delta H}{\delta x} + \frac{f V|V|}{2D} + \frac{\delta V}{\delta t} = 0 \~\ E_2 = \frac{\delta H}{\delta t} + \frac{a^2}{g} \frac{\delta V}{\delta x} = 0

E_1 = g \frac{\delta H}{\delta x} + \frac{f V|V|}{2D} + \frac{\delta V}{\delta t} = 0 \\~\\ E_2 = \frac{\delta H}{\delta t} + \frac{a^2}{g} \frac{\delta V}{\delta x} = 0

These equations combined linearly using an unknown multiplier 𝛌 :

E = E_1 + \lambda E_2 = \lambda\left( \frac{g}{\lambda} \frac{\delta H}{\delta x} + \frac{\delta H}{\delta t} \right) + \left( \lambda\frac{a^2}{g} \frac{\delta V}{\delta x} + \frac{\delta V}{\delta t} \right) + \frac{f V|V|}{2D} = 0 \\~\\ \frac{dH}{dt} = \frac{\delta H}{\delta x} \frac{dx}{dt} + \frac{\delta H}{\delta t}, \quad \frac{dV}{dt} = \frac{\delta V}{\delta x} \frac{dx}{dt} + \frac{\delta V}{\delta t}

E = E_1 + \lambda E_2 = \lambda\left( \frac{g}{\lambda} \frac{\delta H}{\delta x} + \frac{\delta H}{\delta t} \right) + \left( \lambda\frac{a^2}{g} \frac{\delta V}{\delta x} + \frac{\delta V}{\delta t} \right) + \frac{f V|V|}{2D} = 0 \\~\\ \frac{dH}{dt} = \frac{\delta H}{\delta x} \frac{dx}{dt} + \frac{\delta H}{\delta t}, \quad \frac{dV}{dt} = \frac{\delta V}{\delta x} \frac{dx}{dt} + \frac{\delta V}{\delta t}

Further : \frac{dx}{dt}=\frac{8}{\lambda}=\lambda\frac{a^2}{g}

\frac{dx}{dt}=\frac{8}{\lambda}=\lambda\frac{a^2}{g}

Equation E becomes ordinary differential equation :\lambda\frac{dH}{dt}+\frac{dV}{dt}+\frac{fV|V|}{2D}=0

\lambda\frac{dH}{dt}+\frac{dV}{dt}+\frac{fV|V|}{2D}=0

The solution of this equation yields the two-particular value of :\lambda=\pm\frac{g}{a}

\lambda=\pm\frac{g}{a}

By substituting the values of  in the equation, the particular manner in which x and t are related is

\frac{dx}{dt}=\pm a

\frac{dx}{dt}=\pm a

Case Guide

Part 1: Create Case

  1. Select the Surge Analysis – Water Hammer application in the Hydraulics module.
  2. To create a new case, click the “Add Case” button.
  3. Enter Case Name, Location, Date and any necessary notes.
  4. Fill out all required parameters.
  5. Make sure the values you are inputting are in the correct units.
  6. Click the CALCULATE button to overview results

Input Parameters

  • Flowing Temperature(°F)
  • Liquid Specific Gravity
  • Upstream Pressure(psig)
  • Flow Rate(Barrels per Day)
  • Internal Pipe Diameter(in)
  • Kinematic Viscosity
  • Length of Pipeline(mi)
  • Upstream Elevation(ft)
  • Downstream Elevation(ft)

Surge Analysis – Water Hammer

Part 2: Outputs/Reports

  1. If you need to modify an input parameter, click the CALCULATE button after the change.
  2. To SAVE, fill out all required case details then click the SAVE button.
  3. To rename an existing file, click the SAVE As button. Provide all case info then click SAVE.
  4. To generate a REPORT, click the REPORT button.
  5. The user may export the Case/Report by clicking the Export to Excel icon.
  6. To delete a case, click the DELETE icon near the top of the widget.

Results

  • Friction Factor
  • Average Adiabatic Bulk Modulus(psi)
  • Average Wave Speed Pipeline(ft/sec.)
  • Erosional Velocity (ft/sec.)
  • Sonic Velocity (ft/sec.)

Surge Analysis – Water Hammer

References

  • “Pipeline Rules of Thumb” Gulf Professional Publishing, Seventh Edition, McAllister, E. W.
  • “Gas Pipeline Hydraulics”, Systek Technologies, Inc., Menon, Shahi E.
  • “Advanced Pipeline Design”, Carroll, Landon and Hudkins, Weston R.
  • American Gas Association (AGA), “Reference: Eq-17-18, Section 17, GPSA”, Engineering Data Book, Eleventh Edition
  • Hydraulic Transients, McGraw-Hill, New York., Streeter, V.L. and Wylie, E.B. (1967)
  • Water Hammer Analysis. Jour. Hyd. Div., ASCE., Vol. 88, HY3, pp79-113 May, Streeter, V.L. (1969)
  • Unsteady flow calculations by numerical methods’, Jour. Basic Eng., ASME., 94, pp457-466, June. Streeter, V.L. (1972),
  • Hydraulic Pipelines, John Wiley & Sons, J. P Tullis (1989)

FAQ

  • What is Erosional Velocity?

    Pipe erosion begins when velocity exceeds the value of C/SQRT(ρ) in ft/s, where ρ = gas density (in lb./ft3) and C = empirical constant (in lb./s/ft2) (starting erosional velocity). We used C=100 as API RP 14E (1984). However, this value can be changed based on the internal conditions of the pipeline. Check Out

  • What is Sonic Velocity?

    The maximum possible velocity of a compressible fluid in a pipe is called sonic velocity. Oilfield liquids are semi-compressible, due to dissolved gases. Check Out


Updated on December 21, 2023

Was this article helpful?

Related Articles