This procedure is for designing the bore path specific using radius of curvature calculations for plastic pipe that are basically the same as discussed for steel pipe. As with steel product pipe, plastic pipe, when installed by HDD, may experience high-tension loads, severe bending, and external fluid pressures. HDD installation subjects the pipe to axial tensile forces caused by the frictional drag between the pipe and the borehole or drilling fluid, the frictional drag on the ground surface, the capstan effect around drill-path bends, and hydrokinetic drag. The pipe may also be subjected to external hoop pressures caused by the external fluid head and bending stresses. Determination of pullback forces involves the assumption of many variables and installation techniques that include:
Pipe weight β Weight of the pipe (lbs/ft)
D – Pipe Outside Diameter (inch)
DR β Diameter Ratio (D/t)
ππ€ = Density of water (lb/ft3)
πΎπ = Specific gravity of pipe material
(to be calculated only if the pipe is filled with water)
πππ‘πππβ’π€πππβπ‘ = πππππππ‘πππππβ’π£ππ βππ€πππβπ‘
Wweight β Weight of water (lb/ft3)
π·ππ πππππππ’πππππβπ‘ = ππππππ₯π‘.π£ππ ππ’ππ€π‘
mudwt = Weight of mud (lb/ft3)
π€π = 1.06 πππππ€πππβπ‘
ππ = π€π + πππ‘πππβ’π€πππβπ‘ β π·ππ πππππππ’πππππβπ‘
Thk = hydro kinetic force (lbs)
Dbh = Borehole diameter, usually 1.5.D (inch)
ππππ2 = πππΏ1πππ ππ1πππππ
L1 β Length of the straight section 1
ΞΈS1 – Angle in degrees from horizontal for straight section 1
ΞΌSoil – Average coefficient of friction between pipe and soil. Recommended value between .21-.3 (Maidla)
π·πππ2 = ππ·πΏ1πππ’π
ΞΌmud – Fluid drag coefficient for steel tube pulled through bentonite mud
βπ2 = |ππππ2| + π·πππ2 β ππ πΏ1π ππππ 1 + πβπ
π2 = βπ2 + π1
T1 – Pull back as the pipe enters the drill hole (lbf)
(based on Roarkβs solution for elastic beam deflection)
ΞΈC1 – Angle in degrees from horizontal for curved section 1
R1- Radius of curvature of curve section 1 (ft)
Larc1 – Length of curved section 1(ft)
E – Young’s Modulus (psi)
ππππ = |π3πππππ|
π·πππ3 = ππ·πΏπππ1πππ’π
π3 = βπ3 + π2
ππππ4 = πππΏπ πππ πππππππ
Ls – Length of straight section between bends (ft)
ΞΈs – – Angle in degrees from horizontal for straight sections between bends
π·πππ4 = ππ·πΏπ πππ’π
βπ4 = |ππππ4| +π·πππ4 β ππ πΏπ π ππππ + πβπ
π4 = βπ4 + π3
ΞΈC2 – Angle in degrees from horizontal for curved section 2
R2– Radius of curvature of curve section 2 (ft)
Larc2 – Length of curved section 2(ft)
ππππ = |π5πππππ|
π·πππ5 = ππ·πΏπππ2πππ’π
π5 = βπ5 + π4
ππππ6 = πππΏ2πππ ππ2πππππ
π·πππ6 = ππ·πΏ2πππ’π
βπ6 = |ππππ6| + π·πππ6 β ππ πΏ1π ππππ 12 β Length of the straight section 2
ΞΈS2 – Angle in degrees from horizontal for straight section 2
π6 = βπ6 + π5
ππ‘ππ‘ππ = βπ2 + βπ3 + βπ4 + βπ5 + βπ6
Ttotal – Total pull load of the pipe (lbf)
R = 40 D
πΏπππ = πΈ24.ππππ
πΏπππ₯ = πΈ24.ππππ₯
E24 = 24 hr-Apparent Modulus of Elasticity (psi)
Ξ΄sp β Allowable/Safe Pull Stress (psi)
πππ₯π‘ = ππ€β’πΎπβ’π»
H = depth of the bore profile (ft), usually the depth of the horizontal section
ππππ₯ = πππ₯π‘ + βπ¦πππππππ π π’ππ
f0 β Ovality compensation factor based on % of Deflection
*The design changes based on borehole design (section configuration)